chinaMM2019uw

竞赛主题:水下图像增强

image

参赛方式:

参与竞赛人员请将下列信息发送邮件至:chinamm2019uw@163.com。
队伍名称、队员(每位队员的真实姓名、单位、电子邮箱)、联系手机号。每人仅限参加一支队伍,不可重复参加。

竞赛结果:

image

竞赛简介:

水下图像是海洋信息的重要载体,通过水下相机和水下机器人等方式采集到的水下图像,因水下复杂的成像环境以及光照条件导致目前水下图像常出现对比度低、纹理模糊、颜色失真、光照不均匀和可视范围有限等图像质量退化问题。水下图像增强算法则是指针对水下成像系统拍摄得到的低质量图像进行恢复和增强的方法,改善图像的视觉效果。

近年来,水下图像增强算法在计算机视觉和图像处理中得到了广泛应用,国内外也有众多的学者研究这一课题并取得了相应的进展。然而,现有水下图像增强算法一般会造成图像信息损失,难以平衡图片对比度和饱和度间的关系。近年来,有许多学者提出基于深度学习的水下图像增强算法,但是依然无法满足实际应用的需求。如何在能够在保证对水下图像信息还原的同时有效解决颜色偏差以及细节模糊等问题,是水下图像增强的一个主要挑战。

此项竞赛旨在吸引国内多媒体/计算机视觉领域的研究人员,衷心希望学术界和工业界的研究人员踊跃参加,旨在推动人工智能发展以及水下机器人技术进步,架起学术界与工业界之间的沟通桥梁,促进图像增强与复原相关理论、技术及应用的发展,提升相关研究水平。

竞赛描述:

  1. 训练:提供水下图像训练集,但不限定训练集;
  2. 验证:提供水下图像验证集;
  3. 测试:测试集不会公开发布,但与验证集性质相似;
  4. 环境:不限定测试环境;
  5. 评测:鉴于合成数据与真实图像差异较大,本次竞赛中所有图像数据均为真实采集的水下图像数据,竞赛结果以task-driven metric作为评审依据[1]。参赛方需提交代码和图像增强结果,由组织方测试代码并得到最终的处理效果,排名靠前者为优胜,所有评测结果均在网上及时发布。

[1]Risheng Liu, Xin fan, Ming Zhu, Minjun Hou, and Zhongxuan Luo.Real-world Underwater Enhancement: Challenges,Benchmarks, and Solutions.https://arxiv.org/pdf/1901.05320.pdf

竞赛数据:

竞赛训练及验证数据集:链接: https://pan.baidu.com/s/1XpXJo7H5NXYvq0aQUJ_wzw 提取码: 6qci

日程安排:

image

竞赛组委会

image